Interactive App Security Reports – Powered by AI

With Appicaptor, we analyze mobile apps with a strong focus on their IT security quality. We provide companies with well-founded assessments of potential risks. These analyses serve as an important decision-making foundation for IT departments and security managers. However, we also know that in practice, receiving complex and extensive analysis reports often leads to very specific follow-up questions. Customers want more details about particular analysis criteria, the relevance in their environment, or background information on specific security issues. Such details are mostly already documented, but sometimes can require some effort to find due to the report’s size. 

To lower the barrier and improving the understanding of result implications for users, in a first step we are currently researching the possibilities for an AI-powered follow-up system on app security reports, based on our current Appicaptor reports.  

Technical Approach 

The centerpiece of the new interactive capability is a Large Language Model (LLM) that acts as a conversational interface to our analysis data and IT security expertise. To achieve this, we are using domain-specific embeddings that enrich the LLM with the context it needs to provide precise, reliable answers. The embeddings are generated from three main knowledge sources: the analysis results of a customer’s individual app report, the structured descriptions of our evaluation criteria (covering aspects such as data protection, cryptographic usage, platform-specific guidelines or permission management), and specialized knowledge from the domain of mobile app security, consolidated from best practices, common vulnerabilities, and security standards. 

By combining these data sources, the aim of our development is that the LLM can go beyond simple report summaries. Instead, thanks to the embedding approach, it retrieves relevant information from the curated knowledge base before responding. This minimizes the likelihood of incorrect outputs and ensures that responses stay consistent and precise. Through customer-specific data loading, privacy through the self-hosted LLM is guaranteed. Furthermore, data is not used for training nor could the LLM access content of other customers reports. 

Added Value for Customers 

With this development, we will reduce the effort required to understand complex security criteria. Instead of issuing additional requests or conducting further research, customers then can instantly receive tailored explanations. Responses are based on their customized report data, combined with industry knowledge. This saves time, improves transparency, and creates confidence in decision-making about which apps to approve or restrict. 

Outlook – Preview at it-sa in Nuremberg 

Although this development is still underway, we want our customers and interested visitors to experience it and get early feedback. That’s why we will showcase a preliminary version of the AI-powered follow-up system at it-sa in Nuremberg from October 7th to October 9th, 2025. You can find us at Hall 6, Booth 416. Visitors will be able to explore the system live and see firsthand the benefits of interactive app security AI reports. 

Apple’s Required Reason API: Aftermath after one year in practice

Apple designed the “Required Reason” API to enhance user privacy and trust. It helps ensure that app developers clearly communicate the reasons for requesting access to personal data or certain device capabilities. The guideline is now active for almost a year, and we’ve observed that this approach seems to generally work. But in practice, we observe some developers sneaking around these restrictions without Apple acknowledging this fact.

A smartphone with a shield symbol on the screen is shown beside a red apple with a bite taken out of it, symbolizing incomplete privacy.

As we approach the first anniversary of Apple’s Required Reasons API, we feel it’s time to recap it’s privacy gains in practice.

For developers, the Required Reasons API acts as a gatekeeper into the app store. It requires them to provide clear justifications for using certain APIs that access sensitive user data or system capabilities. The users can then inspect and evaluate the provided reason during app install. The principle behind this API is to promote transparency and user control over personal data. A significant contribution is the seamless integration of third-party library required reasons into the main app. This has ensured that the privacy measures extend beyond the core app, covering all the integrated elements.

Diving into the Details: Boot Time Example

To illustrate this, let’s take the example of boot time. The boot time of a device in microseconds is unique and can easily be used for device identification. Thus, such data requires sufficient protection to hinder device fingerprinting and therewith protecting the user’s privacy. Apple has identified two boot time related APIs: systemUptime and mach_absolute_time(). These require developers to provide specified reasons for their use. Apps or libraries accessing these methods must provide a reason in the app’s/library’s PrivacyInfo.xcprivacy file. This XML-file contains among other things a key specifying a resource linked with a reason for accessing this resource. Apple provides different short identifiers which specify a usage purpose as shown here:

<key>NSPrivacyAccessedAPICategorySystemBootTime</key>
<string>35F9.1</string>

In this example, the short identifier specifies the following reason, documented by Apple:

“Declare this reason to access the system boot time in order to measure the amount of time that has elapsed between events that occurred within the app or to perform calculations to enable timers. Information accessed for this reason, or any derived information, may not be sent off-device. There is an exception for information about the amount of time that has elapsed between events that occurred within the app, which may be sent off-device.”

A Year of Practice: The Good…

To evaluate these advancements in practice, we have collected the most popular third-party libraries for iOS apps. Next, we searched for libraries, known for device fingerprinting activities. The Required Reason API typically impacts such libraries the most, since they heavily rely on this data. In practice, the top three libraries leveraging device fingerprinting techniques make up more than 80% market share. Thus, analysing the top three libraries already provides broad coverage. We found that the top three libraries in fact use APIs from the “Required Reasons API” list, but provide a proper reason declaration. This means, that whenever a respective API is used, an appropriate cause in the PrivacyInfo.xcprivacy is provided. Thus, developers are adhering to the rules, and/or Apple is effectively enforcing these rules in the App Store.

…and the Bad

However, we have observed instances in some used libraries where developers have found ways around these obligations. These libraries use other methods for querying boot time, such as sysctl and sysctlbyname.

In iOS, sysctl and sysctlbyname are system calls enabling access to kernel parameters at runtime. They allow developers to query essential information about the system, such as CPU and memory statistics or the boot time. The sysctlbyname call offers a more user-friendly access method by using string identifiers instead of integers. Thus, an alternative way to query the boot time with this function would be:

sysctlbyname("kern.boottime", &bootTime, &size, nil, 0)

Additionally enforcing these APIs would require evaluating the arguments during the static analysis in Apple’s app publishing process. Evaluating the arguments during a static code analysis can sometimes be complicated if the argument isn’t a constant. Advanced techniques like symbolic execution or data dependency analysis might be necessary, features already applied in Appicaptor.

We have already contacted Apple on May 2nd, 2024 and informed them about missing items in their Required Reason API. However, they did not respond up until this day. We think that Apple is well aware of these APIs but doesn’t want to confirm this due to political reasons.

The Road Ahead

In conclusion, we see that Apple strides in the right direction, but there are still loopholes that need to be addressed. We look forward to seeing Apple continue to enhance its privacy measures, closing remaining gaps. Meanwhile, we continue to monitor Apple’s Required Reason APIs usage with Appicaptor and check for violations.

Visit us at it-sa 2024: Threats of Device Fingerprinting for Enterprises

What data is transferred by business apps, and how secure is their processing? Our research shows: If your employees use apps arbitrarily, you put your company’s security at risk.

At it-sa 2024, we present our app analysis framework Appicaptor. You can use it to automatically check whether apps are compliant with your company’s IT security demands. New results within the Athene funded research project FiDeReMA will improve Appicaptor analysis techniques. Among other things, the goal is to identify and evaluate privacy implications when using arbitrary apps.

A fluffy blue monster holds a smartphone displaying the message "DENY ALL COOKIES," referencing cookie permissions. A bowl of black cookies sits beside it, creating a humorous contrast between the tech message and the monster's love for cookies.

Our current efforts to improve Appicaptor revolve around different privacy aspects:

  • Device fingerprinting
  • App DSGVO Consent Banners
  • Permission piggybacking of Android in app third-party libraries

Device Fingerprinting

Device fingerprinting is a technique used to uniquely identify devices and therewith typically also users. Mobile apps make use of different device properties such for example device name, software version and others. They combine such values mostly with a hashing function to a unique identifier. Use cases for device fingerprinting are app usage statistics, fraud detection and mostly targeted advertisement.

When employees install apps with device fingerprinting on their mobile corporate devices, it can lead to the loss of sensitive business data for companies. Attackers can acquire the collected data and potentially identify the devices of company management, spy on trade secrets, and ascertain customer contacts. In practice, the Cambridge Analytica case shows how sufficient data from various sources can be used to analyze users and manipulate them through targeted advertising, thereby influencing even election results.

Identified Device Fingerprinting Activity for the Top 1.000 Android Apps (source)

Our analysis results show that more than 60% of the top 1,000 apps on Google Play employ device fingerprinting techniques. This allows a unique device identification even across app borders.

We extracted 30,000 domains from the most popular 2,000 iOS and Android apps. Afterwards, we filtered out domain names for the most prevalent device fingerprinters covering 90% market share. We were able to prevent device fingerprinting in 40% of the cases by using publicly available domain blocklists. These lists are specialized on tracking and advertisement domains and can be easily applied to for example a firewall. Another 40% would easily be blockable by updating the blocklist: Some fingerprinters use random subdomains for their communication in the form of https://8726481.iFingerprinter.org giving many possibilities to be blocked.

We also proposed an approach to randomize return values of popular properties used for device fingerprinting. Our results prove that this technique dramatically reduces the uniqueness of the device fingerprint. Nevertheless, respective APIs remain accurate enough for their intended use cases. The hope is that our proposed techniques are included in future Android and iOS releases.

In-App DSGVO Consent Banners

Many of the previously mentioned device fingerprinting properties would typically require user consent as stated by the DSGVO. According to recent court decisions and EU regulations, rejecting must be just as easy as accepting consent banners. However, many companies don’t obey such regulations. Those who obey mostly apply dark pattern to push the user into accepting all tracking.

Example DSGVO Consent Banner with the option to reject all tracking on first instance.

We are currently working on detecting if apps provide a reject option on first instance, without having to click through several submenus. In our attempt, we are employing artificial intelligence to analyse such consent banners for reject options on first instance. The results yield a success rate of 82%. Some apps try hard to remain within legal boundaries but make it hard for users to reject data usage. Can you find the first level reject option in the following consent banner? – Yes there is an option.

Example DSGVO Consent Banner that uses dark patterns to hide reject tracking option.

We have collected the most interesting consent banners and bundled them into a game. With the app “Reject all cookies” you need to overcome several consent banners and keep your data private. Having rejected all “cookies” in the app you can win real cookies at our it-sa 2024 booth (6-314).

Permission piggybacking in Android Apps

Traditionally, Android apps comprise a main application and several supporting libraries. These libraries often inherit permissions from the main app, granting them unnecessary access beyond their core functions. This leads to permission piggybacking, where libraries exploit inherited permissions to gather data without requesting them directly. Advertisement and tracking libraries particularly leverage this tactic to collect extensive user data.

We have developed an analysis tool to detect third-party app libraries only probing for already granted permissions, without ever requesting permissions themselves.

Analysing the top 1,000 apps on Google Play reveals that 50% of the libraries exhibit this permission probing behaviour. Presumably, these libraries then adapt their behaviour according to the granted permissions of the main app. Accordingly, they collect more or less data, as available. Most of the identified libraries exhibiting such behaviour are well-known advertising and tracking libraries. This fact underlines the urge for a finer granular permission system to separate main app and third-party libraries.

Visit us at it-sa 2024 and have a cookie with us!

You’ll find us in hall 6, booth number 6-314 for a demonstration and discussions.

Security Implications of Apple ID Switching and Keychain Merging in COPE Mobile Environments

The ability to switch Apple IDs on iOS devices poses a security risk for Corporate-Owned, Personally Enabled (COPE) mobile environments. When users opt to retain Keychain entries while transitioning from a corporate Apple ID to a private Apple ID, it results in the merging of passwords to the private Apple ID. This merging poses a significant challenge for organizations that need to maintain strict control over corporate credentials, as enterprise passwords can then be synced with all private devices using the private Apple ID.

Switching Apple IDs on an iOS device involves opening the “Settings” app on an iOS device, navigate to the Apple ID section and opt to sign out of the current Apple ID. This prompts a confirmation step, asking users if they wish to keep a copy of their data on the device or to delete it. This decision is crucial to consider because if the user opts to keep the Keychain data to be stored on the device, this decision will have implications for the passwords associated with the Apple ID currently signing out. Following the sign-out, users can proceed to sign in with the new Apple ID. Once the necessary information is entered and the setup is complete, the iOS device becomes associated with the new Apple ID. The device syncs with the new account, applying apps, data, and settings associated with the updated Apple ID. However, apps installed with the previous Apple ID are still usable.

Saved passwords of personal Apple ID
Saved passwords of personal Apple ID
Saved passwords of corporate Apple ID
Saved passwords of corporate Apple ID

Keychain Merging and Its Effects

When logging into a website using Safari, a pop-up typically appears, asking if the user likes to store the password for AutoFill. This method simplifies the process of adding accounts to the password store. Alternatively, when creating a new account, users receive an automatically generated strong password. In either case, users can add accounts and passwords in the password store. The passwords are stored in the Keychain. If the user chooses to keep the Keychain data stored on the device during the Apple ID switching, this results in a merging of the stored passwords of the former and the latter configured Apple ID on the device.

COPE environments prioritize the separation of work and personal data, but the Keychain merging while switching Apple IDs on iOS devices undermines this separation. This has to be considered in situations where employees use their personal Apple IDs alongside corporate profiles on the same device. If one Apple ID during the Apple ID switching process is the corporate ID and the other is the private ID, that leads to merging of corporate and personal credentials compromising the security posture of COPE mobile environments and/or the privacy of the user’s private credentials.

Data retention dialogue when signing out from one Apple ID: When the "Keychain" option is selected in the dialogue whilst signing out from corporate Apple ID and before signing in to the personal Apple ID, stored corporate passwords are merged with stored personal passwords.
Data retention dialogue when signing out from one Apple ID: When the “Keychain” option is selected in the dialogue whilst signing out from corporate Apple ID and before signing in to the personal Apple ID, stored corporate passwords are merged with stored personal passwords.
Corporate passwords from signed out corporate Apple ID are merged to saved passwords of personal Apple ID. All shown passwords are available in personal Apple ID.
Corporate passwords from signed out corporate Apple ID are merged to saved passwords of personal Apple ID. All shown passwords are available in personal Apple ID.

Lack of Mitigation Through MDM Restrictions

Currently, there is an absence of Mobile Device Management restrictions to mitigate the unintended consequences of password merging during Apple ID switching. The inability to prevent Keychain merging in COPE environments can have a significant impact for organizations. The only measure is to enforce employee education and awareness regarding the risks associated with Apple ID switching and Keychain merging. Training programs should emphasize the importance of choosing secure options during account transitions and the potential impact on corporate and private data security.

Conclusion

The merging of Keychain entries during Apple ID switching on iOS devices poses a significant security challenge, particularly in COPE mobile environments. Organizations currently need to be proactive in addressing this issue through employee education and awareness programs. Collaboration between organizations, MDM providers and Apple, is needed to develop comprehensive solutions that safeguard corporate credentials and mitigate the risks associated with Apple ID switching.

No Patch, no Trust: Consequences of iOS Data Flow Restriction Bypasses for Enterprises

A large, sliced apple stands upright in a grassy field with a winding path leading through its hollow core, creating a tunnel-like effect. The surreal scene opens to a bright, circular light at the end of the path under a clear blue sky.

The number of ways to bypass iOS data flow restrictions meanwhile has further increased, but Apple still does not bother to fix them. So, the question is: How trustworthy are iOS MDM restrictions if even simple tricks to bypass them are not closed by Apple?

In many enterprises, there is the need to separate data of different origins or trust levels. In COPE (company owned, personally enabled) deployments this typically is the separation between private and business apps. Whereas in COBO (company owned, business only) deployments often data of supporting tools (such as travel management) should be separated from confidential enterprise data or other data with higher protection requirements.

Apple acknowledges this demand of controlling the data flow, “to keep it protected from both attacks and user missteps” by applying the Mobile Device Management (MDM) settings “Managed Open In” and “Managed pasteboard”. However, we have already demonstrated that it is possible to circumvent these MDM restrictions with the pre-installed iOS Shortcuts App. Others also reported issues already in 2020 with the possibility to use the “Quick Look” functionality of the native iOS email client for a bypass, also demonstrated in a video.

New Findings

The recently new discovered and reported issues are related to the iOS Files app. The first issue is related to the “Recents” Tab of the Files app. When a user had opened any document in a managed app before and now open an unmanaged document in the “Recents” tab of the Files app, the share action incorrectly presents a list of managed apps instead of unmanaged apps. The opposite direction for the bypass (managed to unmanaged app) is the second newly reported issue. Deleting a managed document with the Files app and copying it to an unmanaged app folder (instead of restoring it) removes the MDM restriction and permits the user to open the document in the unmanaged app. This is also shown in our extended demonstration video, now demonstrating five unfixed issues with the iOS data flow restrictions.

Reactions to Reported Issues

We again reported the two new issues to Apple, but also this time, Apple argued that “MDM profiles provide configuration management but do not establish additional security boundaries beyond what iOS and iPadOS have to offer.” A similar argument was also given for the reported MDM restriction bypass of SySS GmbH.

For all these six bypass issues, there are currently no mitigations available. Taking all the current conversations with Apple into account, and as reported issues of 2020 are still not fixed, there seems to be no justifiable reason to believe that our findings will be fixed sooner.

Consequences for Enterprises

MDM restrictions are a vital instrument for securing the usage of iOS devices in enterprise environments. Only thanks to these restrictions, the requirements of enterprises can be fulfilled for a device that is primarily developed for the consumer market. Even with effective MDM restrictions it is still a challenging task for enterprises to keep up with constantly changed and extended features of mobile smartphone operating systems. And often enough, MDM restrictions that would make new features acceptable for enterprises are released only major versions later, if any (e.g., still no possibility to prevent a mix-up of private and enterprise passwords when switching between private and enterprise Apple IDs in COPE deployments, discussed in an upcoming article).

Experiencing the lack of support for fixing multiple reported issues in advertised security features now raises the question: Which other MDM restrictions are insecure? When one follows Apple’s argument, for any other bypass of such MDM restrictions a patch will be rejected and probably already have been rejected before, as MDM restrictions are always just configuration options per definition. This isn’t then only a technical issue, it becomes an issue of trust in supporting enterprises with reliable solutions.

In consequence, the missing patches reduce the possibilities for a secure iOS enterprise deployment in COPE and COBO scenarios.

Trivial Bypass of iOS MDM Restrictions Apple doesn’t fix

Apple promotes MDM restrictions that should prevent data flows between managed and unmanaged apps. These restrictions can be bypassed easily and effortlessly using an app that is pre-installed on every new iOS device: the Shortcuts App. This is a finding of our practical tests on iOS 17.1 that should concern all enterprises that rely on these restrictions to use iOS devices in a compliant way with their enterprise policy for personal enabled usage.

Update: Problem is not only related to iOS Shortcuts App. MDM Restrictions can also be bypass with iOS Files App and iOS E-Mail client.

Apple promotes the data flow control between managed and unmanaged apps as a solution for data separation between personal and corporate data, “to keep it protected from both attacks and user missteps“. To achieve this protection, many enterprises configure the following Mobile Device Management (MDM) restrictions for the managed iOS devices:

Managed pasteboard. In iOS 15 and iPadOS 15 or later, this restriction helps control the pasting of content between managed and unmanaged destinations. When the restrictions above are enforced, pasting of content is designed to respect the Managed Open In boundary between third-party or Apple apps like Calendar, Files, Mail, and Notes. And with this restriction, apps can’t request items from the pasteboard when the content crosses the managed boundary.

Allow documents from managed sources in unmanaged destinations. Enforcing this restriction helps prevent an organization’s managed sources and accounts from opening documents in a user’s personal destinations. This restriction could prevent a confidential email attachment in your organization’s managed mail account from being opened in any of the user’s personal apps.

(see Apple Document “Managing Devices and Corporate Data”, accessed October 9th, 2023)

With the first restriction, a user should not be able to paste the content of the pasteboard to an unmanaged app, if the content was copied from a managed app, or vice versa. The second restriction applies the same restriction to documents. And in our tests, iOS prevented us from performing such actions, after the MDM restrictions for the test devices have been activated.

However, the iOS Shortcuts App, which is an integral part since iOS 13 and can be used to automate almost any task on iOS, can be abused to bypass such restrictions. The first shortcut (below on the left side) simply reads the clipboard and copies the content back to the global clipboard, which is then also synced with all other devices that the user has logged in with the same Apple account. When the user activates this shortcut, it strips of the information, that the original content was copied from a managed app and so iOS does no longer prevent the paste action to an unmanaged app. Each shortcut can also be combined with a trigger action that can automated the execution of it. So, the bypass of iOS MDM Restrictions can also be automated.

The second example shortcut uses the input of the share sheet to save the content of a document from a managed app. When using this shortcut in the share sheet, iOS prompts for name and location of the file and stores it without the information, that the content originated from a managed app. This way the document can be opened also from unmanaged apps. We created a video for both bypass methods to show the environment and the results in action. But these are only simple examples of the problem. There are many more possibilities to use actions of the Shortcuts App to bypass the iOS MDM restrictions.

Apparently, the Shortcuts App has privileges to access any data from managed apps, although it is not configured as a managed app through the MDM profile. This way the app can access the data, but when the data is saved by the Shortcuts App, it is saved as an unmanaged app. The fix therefore should be to keep the origin information of the content the Shortcuts app processes. This way the app could still access content from managed apps, but the processed content would be marked as originated from a managed app and this way the data separation would be kept intact.

We reported this flaw via Apple’s responsible disclosure process. However, the issue was rejected. We provided a detailed description, screenshots and videos, but also on a second try, where we explained again that the bypass circumvents an advertised security feature of iOS, it was not accepted. We also reached out to Apple via feedbackassistant.apple.com, but did not receive any answer in 2 months. As the current Shortcuts App version 6.1.2 is still vulnerable, we decided to publish the findings to warn enterprises that they cannot rely on iOS data flow restrictions.

A short-term solution would be to delete the iOS Shortcuts App from the devices and block the installation with the MDM blacklist via the bundle ID “com.apple.shortcuts” or to exclude devices with installed Shortcuts App from the domain as non-compliant, depending on the provided functionality of the MDM solution used. However, in the VMware Workspace ONE UEM (AirWatch) MDM tested, the Shortcuts App blacklisting did not prevent the installation nor was the device marked as non-compliant.

Without a proper blocking of the Shortcuts App, company data can currently be sent unintentionally in unmanaged apps through manually used or automated shortcuts and thus leave the company in an uncontrolled manner.

You can visit us on it-sa Expo&Congress, 10. – 12. October in Hall 6, Booth 210 for further details.